(本小题12分)设点,点A在y轴上移动,点B在x轴正半轴(包括原点)上移动,点M在AB连线上,且满足,.(Ⅰ)求动点M的轨迹C的方程;(Ⅱ)设轨迹C的焦点为F,准线为l,自M引的垂线,垂足为N,设点使四边形PFMN是菱形,试求实数a;(Ⅲ)如果点A的坐标为,,其中>,相应线段AM的垂直平分线交x轴于.设数列的前n项和为,证明:当n≥2时,为定值.
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
(本小题满分12分)三棱锥中,,,(1) 求证:面面(2) 求二面角的余弦值.
(本小题满分12分)已知,其中向量, (R).(1) 求的最小正周期和最小值;(2) 在△ABC中,角A、B、C的对边分别为、、,若,a=2,,求边长的值.
(本小题15分)已知动圆被y轴所截的弦长为2,被x轴分成两段弧,且弧长之比等于(其中为圆心,O为坐标原点)。(1)求a,b所满足的关系式;(2)点P在直线上的投影为A,求事件“在圆P内随机地投入一点,使这一点恰好在内”的概率的最大值
(本小题13分)如图1,在三棱锥P—ABC中,平面ABC,,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。(1)证明:平面PBC;(2)求三棱锥D—ABC的体积;(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。