选修4—4:坐标系与参数方程. 坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.
如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点 (Ⅰ)证明:AM⊥PM ; (Ⅱ)求二面角P-AM-D的大小; (Ⅲ)求点D到平面AMP的距离
如图,已知四棱锥P—ABCD的底面ABCD为等腰梯形,AB//CD,AC⊥DB,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD. (Ⅰ)求异面直线PD与BC所成角的余弦值; (Ⅱ)求二面角P—AB—C的大小; (Ⅲ)设点M在棱PC上,且,问为何值时,PC⊥平面BMD.
在直三棱柱ABC—A1B1C1中,AB=BC=BB1,D为AC的中点,
(1)求证:B1C∥平面A1BD;
如图,平面平面ABCD,ABCD为正方形,是直角三角形,且,E、F、G分别是线段PA,PD,CD的中点. (1)求证:∥面EFC; (2)求异面直线EG与BD所成的角;
设函数,曲线在点处的切线方程为。 (1)求的解析式; (2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值。