已知椭圆的左右焦点分别是,离心率,为椭圆上任一点,且的最大面积为.(Ⅰ)求椭圆的方程;(Ⅱ)设斜率为的直线交椭圆于两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.
已知向量, , .(Ⅰ)求的值; (Ⅱ)若, , 且, 求的值。
(本小题满分14分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(本小题满分12分)已知椭圆的左、右焦点分别为、,其中也是抛物线的焦点,是与在第一象限的交点,且.(1)求椭圆的方程;(2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.
(本小题满分12分)已知数列、满足,且,(1)令,求数列的通项公式;(2)求数列的通项公式及前项和公式.
(本小题满分12分)如图,四棱锥中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为的菱形,为锐角,M为PB的中点。(1)求证(2)求二面角的大小(3)求P到平面的距离