设 { a n } 的公比不为1的等比数列,其前 n 项和为 S n ,且 a 5 , a 3 , a 4 成等差数列。 (1)求数列 { a n } 的公比;(2)证明:对任意 k ∈ N + , S k + 2 , S k , S k + 1 成等差数列
(本小题满分12分) (1)连续抛掷两枚正方体的骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为,过坐标原点和点P()的直线的倾斜角为 ,求的概率; (2)若,且,过坐标原点和点P()的直线的斜率为,求的概率。
(本小题满分12分)如图,已知三棱锥,,为中点,为中点,且是正三角形,. (1)求证:平面平面; (2)求三棱锥的体积.
(本小题满分12分) 已知{}是公比为q的等比数列,且成等差数列. (Ⅰ)求q的值;(Ⅱ)设{}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由。
已知数列{}中,, , (1)设计一个包含循环结构的框图,表示求算法,并写出相应的算法程序. (2)设计框图,表示求数列{}的前100项和的算法.
对某人某二项指标进行考核,每项指标满分100分,设此人每项得分在上是等可能出现的.单项80分以上,且总分170分以上才合格,求他合格的概率。