求双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程。
已知中心在原点,焦点在x轴上,离心率为的椭圆过点(,). (1)求椭圆的方程; (2)设不过原点的直线与该椭圆交于、两点,满足直线,,的斜率依次成等比数列,求面积的取值范围.
如图,中,侧棱与底面垂直,,,点分别为和的中点. (1)证明:; (2)求二面角的正弦值.
在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目。已知某班第一小组与第二小组各 有六位同学选择科目甲或科 目乙,情况如下表:
现从第一小组、第二小 组中各任选2人分析选课情况. (1)求选出的4 人均选科目乙的概率; (2)设为选出的4个人中选科目甲的人数,求的分布列和数学期望.
已知,(,其中)的周期为,且图像上一个最低点为 (1)求的解析式; (2)当时,求的值域.
已知二次函数,且不等式对任意的实数恒成立,数列满足,. (1)求的值; (2)求数列的通项公式; (3)求证.