如图所示,有一条等宽(AF=EC)的小路穿过矩形的草地ABCD,已知AB="60m," BC="84m," AE=100m. (1)试判断这条小路(四边形AECF)的形状,并说明理由; (2)求这条小路的的面积和对角线FE的长度.(精确到整数)
随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场 B , C 两点之间的距离.如图所示,小星站在广场的 B 处遥控无人机,无人机在 A 处距离地面的飞行高度是 41 . 6 m ,此时从无人机测得广场 C 处的俯角为 63 ° ,他抬头仰视无人机时,仰角为 α ,若小星的身高 BE = 1 . 6 m , EA = 50 m (点 A , E , B , C 在同一平面内).
(1)求仰角 α 的正弦值;
(2)求 B , C 两点之间的距离(结果精确到 1 m ) .
( sin 63 ° ≈ 0 . 89 , cos 63 ° ≈ 0 . 45 , tan 63 ° ≈ 1 . 96 , sin 27 ° ≈ 0 . 45 , cos 27 ° ≈ 0 . 89 , tan 27 ° ≈ 0 . 51 )
如图,一次函数 y = kx - 2 k ( k ≠ 0 ) 的图象与反比例函数 y = m - 1 x ( m - 1 ≠ 0 ) 的图象交于点 C ,与 x 轴交于点 A ,过点 C 作 CB ⊥ y 轴,垂足为 B ,若 S ΔABC = 3 .
(1)求点 A 的坐标及 m 的值;
(2)若 AB = 2 2 ,求一次函数的表达式.
如图,在矩形 ABCD 中,点 M 在 DC 上, AM = AB ,且 BN ⊥ AM ,垂足为 N .
(1)求证: ΔABN ≅ ΔMAD ;
(2)若 AD = 2 , AN = 4 ,求四边形 BCMN 的面积.
2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:
贵州省历次人口普查城镇人口统计表
年份
1953
1961
1982
1990
2000
2010
2020
城镇人口(万人)
110
204
540
635
845
1175
2050
城镇化率
7 %
12 %
19 %
20 %
24 %
a
53 %
(1)这七次人口普查乡村人口数的中位数是 万人;
(2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率 a 是 (结果精确到 1 % ) ;假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到 60 % ,则需从乡村迁入城镇的人口数量是 万人(结果保留整数);
(3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.
(1)有三个不等式 2 x + 3 < - 1 , - 5 x > 15 , 3 ( x - 1 ) > 6 ,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
(2)小红在计算 a ( 1 + a ) - ( a - 1 ) 2 时,解答过程如下:
a ( 1 + a ) - ( a - 1 ) 2
= a + a 2 - ( a 2 - 1 ) … … 第一步
= a + a 2 - a 2 - 1 … … 第二步
= a - 1 … … 第三步
小红的解答从第 步开始出错,请写出正确的解答过程.