知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.①按方案1(如图)做一个纸箱,需要矩形硬纸板的面积是多少平方米?②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板做一个纸箱比方案1更优,你认为呢?请说明理由.
四边形 ABCD 是边长为4的正方形,点 E 在边 AD 所在直线上,连接 CE ,以 CE 为边,作正方形 CEFG (点 D ,点 F 在直线 CE 的同侧),连接 BF .
(1)如图1,当点 E 与点 A 重合时,请直接写出 BF 的长;
(2)如图2,当点 E 在线段 AD 上时, AE = 1 ;
①求点 F 到 AD 的距离;
②求 BF 的长;
(3)若 BF = 3 10 ,请直接写出此时 AE 的长.
如图,在平面直角坐标系中,四边形 OABC 的顶点 O 是坐标原点,点 A 的坐标为 ( 6 , 0 ) ,点 B 的坐标为 ( 0 , 8 ) ,点 C 的坐标为 ( − 2 5 , 4 ) ,点 M , N 分别为四边形 OABC 边上的动点,动点 M 从点 O 开始,以每秒1个单位长度的速度沿 O → A → B 路线向终点 B 匀速运动,动点 N 从 O 点开始,以每秒两个单位长度的速度沿 O → C → B → A 路线向终点 A 匀速运动,点 M , N 同时从 O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间 t 秒 ( t > 0 ) , ΔOMN 的面积为 S .
(1)填空: AB 的长是 , BC 的长是 ;
(2)当 t = 3 时,求 S 的值;
(3)当 3 < t < 6 时,设点 N 的纵坐标为 y ,求 y 与 t 的函数关系式;
(4)若 S = 48 5 ,请直接写出此时 t 的值.
如图,在 ΔABC 中,以 BC 为直径的 ⊙ O 交 AC 于点 E ,过点 E 作 EF ⊥ AB 于点 F ,延长 EF 交 CB 的延长线于点 G ,且 ∠ ABG = 2 ∠ C .
(1)求证: EF 是 ⊙ O 的切线;
(2)若 sin ∠ EGC = 3 5 , ⊙ O 的半径是3,求 AF 的长.
小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?
某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校 m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1) m = , n = ;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)请根据以上信息直接在答题卡中补全条形统计图;
(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.