已知函数的图象过坐标原点O,且在点处的切线的斜率是.(Ⅰ)求实数的值; (Ⅱ)求在区间上的最大值;(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D. (1)求证:AT2=BT·AD; (2)E、F是BC的三等分点,且DE=DF,求∠A.
已知函数f(x)=2ex-ax-2(a∈R) (1)讨论函数的单调性; (2)若f(x)≥0恒成立,证明:x1<x2时,
椭圆C:(a>b>0)的离心率为,P(m,0)为C的长轴上的一个动点,过P点斜率为的直线l交C于A、B两点.当m=0时, (1)求C的方程; (2)证明:为定值.
如图,在直三棱柱ABC-A1B1C1中,点D是BC的中点. (1)求证:A1B∥平面ADC1; (2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.
某大学外语系有5名大学生参加南京青奥会翻译志愿者服务,每名大学生都随机分配到奥体中心体操和游泳两个比赛项目(每名大学生只参加一个项目的服务)。 (1)求5名大学生中恰有2名被分配到体操项目的概率; (2)设X,Y分别表示5名大学生分配到体操、游泳项目的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ).