在平面直角坐标系中,曲线的参数方程为点是曲线上的动点.(1)求线段的中点的轨迹的直角坐标方程;(2) 以坐标原点为极点,轴的正半轴为极轴建立极坐标系,若直线的极坐标方程为,求点到直线距离的最大值.
已知命题:“,都有不等式成立”是真命题。(I)求实数的取值集合; (II)设不等式的解集为,若是的充分不必要条件,求实数的取值范围.
函数f(x)=x2+x-.(I)若定义域为[0,3],求f(x)的值域;(II)若f(x)的值域为[-,],且定义域为[a,b],求b-a的最大值.
已知集合A={x|a-1<x<2a+1},B={x|0<x<1},若A∩B=φ,求实数a的取值范围.
已知抛物线(且为常数),为其焦点.(1)写出焦点的坐标;(2)过点的直线与抛物线相交于两点,且,求直线的斜率;(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值.
已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).