(本小题满分13分)如图,椭圆的焦点在轴上,左、右顶点分别为、,上顶点为,抛物线、分别以、为焦点,其顶点均为坐标原点,与相交于直线上一点.(Ⅰ)求椭圆及抛物线、的方程;(Ⅱ)若动直线与直线垂直,且与椭圆交于不同的两点、,已知点,求的最小值.
已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明: (1)f(x)为奇函数; (2)f(x)在(-1,1)上单调递减.
判断函数的奇偶性.
已知二次函数满足,且对一切实数恒成立.求;求的解析式;求证:
根据条件求下列各函数的解析式: (1)已知是二次函数,若,求. (2)已知,求 (3)若满足求.
已知,求函数的解析式