(本小题满分12分)已知满足.(Ⅰ)将表示为的函数,并求出的单调递增区间;(Ⅱ)已知的三个内角、、的对边分别为、、,若,且,求的面积的最大值.
已知圆经过,两点,且在两坐标轴上的四个截距之和为2.(1)求圆的方程;(2)若为圆内一点,求经过点被圆截得的弦长最短时的直线的方程.
已知.(1)当时,求上的值域;(2)求函数在上的最小值;(3)证明: 对一切,都有成立
已知数列满足:(1)求的值;(2)求证:数列是等比数列;(3)令(),如果对任意,都有,求实数的取值范围.
已知中,点A、B的坐标分别为,点C在x轴上方。(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;(2)过点P(m,0)作倾角为的直线交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。
如图,四边形为矩形,平面,,平面于点,且点在上.(1)求证:;(2)求四棱锥的体积;(3)设点在线段上,且,试在线段上确定一点,使得平面.