(本小题13分)已知离心率为的椭圆 经过点.(1)求椭圆的方程; (2)过左焦点且不与轴垂直的直线交椭圆于、两点,若 (为坐标原点),求直线的方程.
在直角坐标平面内,已知两点A(-2,0)及B(2,0),动点Q到点A的距离为6,线段BQ的垂直平分线交AQ于点P。证明|PA|+|PB|为常数,并写出点P的轨迹T的方程;
已知动点与双曲线的两个焦点、的距离之和为定值,且的最小值为.求动点的轨迹方程;
已知椭圆与直线相交于两点.当椭圆的离心率满足,且(为坐标原点)时,求椭圆长轴长的取值范围.
过抛物线的焦点作一条斜率为k(k≠0)的弦,此弦满足:①弦长不超过8;②弦所在的直线与椭圆3x2+ 2y2= 2相交,求k的取值范围.
过双曲线C:的右焦点F作直线l与双曲线C交于P、Q两点,,求点M的轨迹方程.