张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
已知函数(I)当a<0时,求函数的单调区间;(II)若函数f(x)在[1,e]上的最小值是求a的值.
某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为(I)求徒弟加工2个零件都是精品的概率;(II)求徒弟加工该零件的精品数多于师父的概率;(III)设师徒二人加工出的4个零件中精品个数为,求的分布列与均值E.
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(I)求证:BD⊥FG;(II)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.(III)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
已知函数的图象经过点 (I)求实数a、b的值;(II)若,求函数的最大值及此时x的值.
已知函数(1)若,求曲线处的切线;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数上至少存在一点,使得成立,求实数的取值范围。