如图,已知:,,,,那么AC与CE有什么关系?写出你的猜想并说明理由。
已知:如图B,C两点把线段AD分成2∶5∶3三部分,M为AD的中点,BM=6cm,求CM和AD的长.
如果方程的解与方程4x-(3a+1)=6x+2a-1的解相同,求式子a-的值.
解方程:(1)1-3(8-x)=-2(15-2x) (2)
数学活动——“关于三角形全等的条件”1.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.2.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.3.【逐步探究】(1)第一种情况:当∠B是直角时,如图①,根据______定理,可得△ABC≌△DEF.(2)第二种情况:当∠B是钝角时,△ABC≌△DEF仍成立.请你完成证明.已知:如图②,△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.证明:(3)第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)4.【深入思考】∠B还要满足什么条件,就可以使△ABC≌△DEF?(请直接写出结论.)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B _________,则△ABC≌△DEF.
如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明.