如图,矩形ABCD中,AB=4,AD=5,将矩形ABCD绕点A顺时针旋转,得到矩形AMNP,直线MN分别与边BC、CD交于点E、F.判断BE与ME的数量关系,并加以证明;当△CEF是等腰三角形时,求线段BE的长;设x=BE,y=CF·(AB2-BE2),试求y与x之间的函数关系式,并求出y的最大值.
如图,在直角坐标平面内,直线y=-x+5与x轴和y轴分别交于A、B两点,二次函数y=+bx+c的图象经过点A、B,且顶点为C. (1)求这个二次函数的解析式; (2)求sin∠OCA的值; (3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.
如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E. (1)求证:直线BD与⊙O相切; (2)若AD:AE=4:5,BC=6,求⊙O的直径.
如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,若∠PAB=40°,求∠P的度数.
居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:
并将调查结果绘制了图1和图2两幅不完整的统计图. 请你根据图中提供的信息解答下列问题: (1)求本次被抽查的居民有多少人? (2)将图1和图2补充完整; (3)求图2中“C”层次所在扇形的圆心角的度数; (4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).求二次函数的解析式;