如图,几何体 E - A B C D 是四棱锥, ∆ A B D 为正三角形, C B = C D , E C ⊥ B D .
(Ⅰ)求证: B E = D E ; (Ⅱ)若 ∠ B C D = 120 ° , M 为线段 A E 的中点,求证: D M ∥ 平面 B E C .
(本小题满分10分)选修4-5:不等式选讲设函数.(Ⅰ)求不等式的解集;(Ⅱ)若,恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左,右焦点.(Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程;(Ⅱ)在(I)的条件下,设直线与圆锥曲线交于两点,求弦的长.
(本小题满分10分)选修4-1:几何证明选讲如图,直线经过⊙上的点,并且⊙交直线于,,连接.(Ⅰ)求证:直线是⊙的切线;(Ⅱ)若⊙的半径为,求的长.
(本小题满分12分)已知函数(,),.(Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立;(Ⅱ)记,(ⅰ)若在上单调递增,求实数的取值范围;(ⅱ)证明:.
(本小题满分12分)已知椭圆:,分别为左,右焦点,离心率为,点在椭圆上,, ,过与坐标轴不垂直的直线交椭圆于两点.(Ⅰ)求椭圆的方程;(Ⅱ)在线段上是否存在点,使得以线段为邻边的四边形是菱形?若存在,求出实数的取值范围;若不存在,说明理由.