甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率(Ⅰ)取出的2个球都是白球,(Ⅱ)取出的两个球至少有一个是白球.
(本小题满分12分)已知等比数列满足:,且是的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若数列{an}是单调递增的,令,,求使成立的正整数的最小值.
(本小题满分12分) 已知向量,设函数. (Ⅰ)求在区间上的零点; (Ⅱ)在△中,角的对边分别是,且满足,求的取值范围.
(本小题满分12分)已知圆,直线 (1)求证:对,直线与圆总有两个不同的交点A、B; (2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线; (3)若定点P(1,1)满足,求直线的方程。
(本小题满分10分)如图,直角梯形中,,,平面平面,为等边三角形,分别是的中点,. (1)证明:; (2)证明:平面; (3)若,求几何体的体积.
(本小题满分10分)已知圆C经过点,和直线相切,且圆心在直线上. (Ⅰ)求圆C的方程; (Ⅱ)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.