设椭圆的左、右焦点分别为F1与F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为。(1)求椭圆C的方程;(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)
已知在棱长为2的正方体中,为的中点.(1)求证:∥;(2)求三棱锥的体积.
已知直线过点,直线的斜率为且过点.(1)求、的交点的坐标;(2)已知点,若直线过点且与线段相交,求直线的斜率的取值范围.
如图,已知在四棱锥中, 底面四边形是直角梯形, ,,.(1)求证:;(2)求直线与底面所成角的正切值.
已知函数且.(1)求函数的定义域;(2)判断的奇偶性并予以证明.
设正数列的前项和为,且.(1)求数列的首项;(2)求数列的通项公式;(3)设,是数列的前项和,求使得对所有都成立的最小正整数.