某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(1)求全班人数,并求出分数在之间的频数;(2)估计该班的平均分数,并计算频率分布直方图中间的矩形的高.
已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x). (1)证明:当x≥0时,f(x)≤(x+c)2; (2)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
已知函数f(x)=ax3-x2+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立. (1)求a,c,d的值; (2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0.
已知函数f(x)=. (1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值; (2)对任意x>0,f(x)≤t恒成立,求t的取值范围.
某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式; (2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).
如图,在C城周边已有两条公路l1,l2在点O处交汇.已知OC=(+)km,∠AOB=75°,∠AOC=45°,现规划在公路l1,l2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C城.设OA=x km,OB=y km. (1)求y关于x的函数关系式并指出它的定义域; (2)试确定点A,B的位置,使△OAB的面积最小.