已知椭圆经过点,离心率为,动点M(2,t)().(1)求椭圆的标准方程;(2)求以OM为直径且截直线所得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.
(本小题满分14分) 若椭圆过点,离心率为,⊙O的圆心在原点,直径为椭圆的短轴,⊙M的方程为,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B. (1) 求椭圆的方程; (2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的方程。
(本小题满分14分) 已知:三次函数,在上单调递增,在上单调递减 (1)求函数f (x)的解析式;
20070328
(2)求函数f (x)在区间[-2,2]的最值。
(本小题满分14分)如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点.(1)求证:平面;(2)求三棱锥D1-ABC的体积.
(本小题满分14分)通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为的样本,问样本中看与不看营养说明的女生各有多少名?(2) 从(1)中的5名女生样本中随机选取两名作深度访谈, 求选到看与不看营养说明的女生各一名的概率;(3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
(本小题满分12分)已知数列是一个等差数列,且,.(1)求的通项;(2) 求前项和;