(本小题满分13分)已知抛物线,过点的直线与抛物线交于、两点,且直线与轴交于点.(1)求证:,,成等比数列;(2)设,,试问是否为定值,若是,求出此定值;若不是,请说明理由.
如图,已知圆心坐标为的圆与轴及直线均相切,切点分别为、,另一圆与圆、轴及直线均相切,切点分别为、。 (1)求圆和圆的方程; (2)过点作的平行线,求直线被圆截得的弦的长度;
已知函数f(x)=mx2-mx-1. (1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围; (2)若对于x∈[1,3],f(x)<5-m恒成立,求实数m的取值范围.
如图所示,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高. (1)证明:平面; (2)若,,,求三棱锥的体积; (3)证明:平面.
下图是淮北市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择6月1日至6月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气重度污染的概率; (2)若设是此人停留期间空气质量优良的天数,请分别求当x=0时,x=1时和x=3时的概率值。 (3)由图判断从哪天开始淮北市连续三天的空气质量指数方差最大?(结论不要求证明)
如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°. (1)若PB=,求PA; (2)若∠APB=150°,求tan∠PBA.