(本小题满分14分)为了解学生升高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm之间的概率;(Ⅲ)从样本中身高在165~180cm之间的女生中任选2人,求至少有1人身高在170~18cm之间的概率。
(本小题满分12分)某地农民种植A种蔬菜,每亩每年生产成本为7000元,A种蔬菜每亩产量及价格受天气、市场双重影响。预计明年雨水正常的概率为 ,雨水偏少的概率为。若雨水正常,A种蔬菜每亩产量为2000公斤,单价为6元/公斤的概率为,单价为3元/公斤的概率为;若雨水偏少,A种蔬菜每亩产量为1500公斤,单价为6元/公斤的概率为,单价为3元/公斤的概率为.(1)计算明年农民种植A种蔬菜不亏本的概率;(2)在政府引导下,计划明年采取“公司加农户,订单农业”的生产模式,某公司为不增加农民生产成本,给农民投资建立大棚,建立大棚后,产量不受天气影响,预计每亩产量为2500公斤,农民生产的A种蔬菜全部由公司收购,为保证农民每亩预期收入增加1000元,收购价格至少为多少?
(本小题满分12分)已知函数¦(x)=2―sin(2x+)―2sin2x,x∈[0,] (1)求函数¦(x)的值域; (2)记△ABC的内角A、B、C所对的边长分别为a、b、c,若¦()=1,b=1,c=,求a的值
已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R.(1)求m与n的关系式;(2)求f(x)的单调区间;(3)当x∈[-1,1]时,m<0,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.
(用数字表示结果)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选一题答一题的方式进行。每位选手最多有5次答题机会。选手累计答对3题或答错三题终止初赛的比赛。答对三题直接进入决赛,答错3题则被淘汰。已知选手甲连续两次答错的概率为(已知甲回答每个问题的正确率相同,并且相互之间没有影响)(1)求选手甲回答一个问题的正确率;(2)求选手甲进入决赛的概率;(3)设选手甲在初赛中答题个数为X,试写出X的分布列,并求甲在初赛中平均答题个数。
已知数列{an}满足a1=,且前n项和Sn满足:Sn=n2an,求a2,a3,a4,猜想{an}的通项公式,并加以证明。