如图,点O在∠APB的平分线上,⊙O与PA相切于点C.求证:直线PB与⊙O相切;PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4,求CE的长.
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
(1)已知一次函数y=x+2与反比例函数,其中一次函数y=x+2的图象经过点P(k,5).①试确定反比例函数的表达式;②若点Q是上述一次函数与反比例函数图象在第三象限的交点,求点Q的坐标.(2)如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.
(1)解方程:(2)解不等式组
(1)计算:﹣(4﹣π)0﹣6cos30°+|﹣2|;(2)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.
在直角坐标系xoy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标.②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.