若函数在定义域内存在区间,满足在上的值域为,则称这样的函数为“优美函数”.(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;(Ⅱ)若函数为“优美函数”,求实数的取值范围.
.(本小题满分13分) 设函数 (1)若函数在x=1处与直线相切 ①求实数a,b的值;②求函数上的最大值. (2)当b=0时,若不等式对所有的都成立,求实数m的取值范围.
. 设数列 (1)求 (2)求证:数列{}是等差数列,并求的表达式.
(本小题满分12分) 在直三棱柱中, AC=4,CB=2,AA1=2,E、F分别是的中点。 (1)证明:平面平面; (2)证明:平面ABE; (3)设P是BE的中点,求三棱锥的体积。
(本小题满分12分) 某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示。 (1)求第3、4、5组的频率; (2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试? (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。
(本小题满分12分) 已知函数的一系列对应值如表:
(1)求的解析式; (2)若在△ABC中,AC=2,BC=3,(A为锐角),求△ABC的面积。