已知:如图,四边形ABCD中,BC=CD=DB,∠ADB=90°,sin∠ABD=,S△BCD=. 求四边形ABCD的周长.
先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.
已知是方程的一个实数根,则代数式的值为.
如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,与y轴的交于C点,其中A点的坐标为(-3,0).(1)求抛物线的表达式;(2)若将此抛物线向右平移m个单位,A、B、C三点在坐标轴上的位置也相应的发生移动,在移动过程中,△BOC能否成为等腰直角三角形?若能,求出m的值,若不能,请说明理由.
如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)
今年是扬州城庆2500周年,东关历史街区某商铺用3000元批发某种城庆旅游纪念品销售,由于销售状况良好,该商铺又筹集9000元资金再次批进该种纪念品,但这次的进价比第一次的进价提高了20%,购进的纪念品数量是第一次的2倍还多300个,如果商铺按9元/个的价格出售,当大部分纪念品售出后,余下的600个按售价的8折售完.(1)该种纪念品第一次的进货单价是多少元?(2)该商铺销售这种纪念品共盈利多少元?