已知是函数的极值点.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当R时,函数有两个零点,求实数m的取值范围.
已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程.
已知函数。(1)若,求a的值;(2)若a>1,求函数f(x)的单调区间与极值点;(3)设函数是偶函数,若过点A(1,m)可作曲线y=f(x)的三条切线,求实数m的范围。
已知椭圆:的一个顶点为,离心率为.直线与椭圆交于不同的两点M,N.(Ⅰ)求椭圆的方程;(Ⅱ)当△AMN得面积为时,求的值.
已知的图象过点,且函数的图象关于轴对称;(1)求的值及函数的单调区间;(2)求函数极值.
某工厂生产一种产品,已知该产品的月产量x吨与每吨产品的价格(元)之间的关系为,且生产吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)