[山东]2012年山东省高考模拟预测卷(四)文科数学试卷
一个学校高三年级共有学生200人,其中男生有120人,女生有80人,为了调查高三复习状况,用分层抽样的方法从全体高三学生中抽取一个容量为25的样本,应抽取女生的人数为( )
A.20 | B. 15 | C.12 | D.10 |
根据表格中的数据,可以判定函数的一个零点所在的区,则的值为( )
-1 |
0 |
1 |
2 |
3 |
|
0.37 |
1 |
2.72 |
7.39 |
20.09 |
|
1 |
2 |
3 |
4 |
5 |
A.-1 B.0 C.1 D.2
已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( )
A. | B. |
C. | D. |
若函数(,,)在一个周期内的图象如图所示,分别是这段图象的最高点和最低点,且(为坐标原点),则( )
A. | B. | C. | D. |
如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的图象可能是( )
A B C D
在正四棱柱中,顶点到对角线和到平面的距离分别为和,则下列命题中正确的是( )
A.若侧棱的长小于底面的变长,则的取值范围为 |
B.若侧棱的长小于底面的变长,则的取值范围为 |
C.若侧棱的长大于底面的变长,则的取值范围为 |
D.若侧棱的长大于底面的变长,则的取值范围为 |
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:
分组 |
频数 |
频率 |
[80,90) |
x |
0.04 |
[90,100) |
9 |
y |
[100,110) |
z |
0.38 |
[110,120) |
17 |
0.34 |
[120,130] |
3 |
0.06 |
(Ⅰ)求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “|m—n|≤10”的概率.
如图,在四棱锥中,,,且DB平分,
E为PC的中点,,
(Ⅰ)证明
(Ⅱ)证明
(Ⅲ)求直线BC与平面PBD所成的角的正切值
给定椭圆: ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足.
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.