已知 a n 为等差数列,且 a 1 + a 3 = 8 , a 2 + a 4 = 12 .
(Ⅰ)求数列 a n 的通项公式;
(Ⅱ)记 a n 的前 n 项和为 S n ,若 a 1 , a k , a k + 2 成等比数列,求正整数 k 的值.
在某国际高端经济论坛上,前六位发言的是与会的含有甲、乙的6名中国经济学专家,他们的发言顺序通过随机抽签方式决定. (Ⅰ)求甲、乙两位专家恰好排在前两位出场的概率; (Ⅱ)发言中甲、乙两位专家之间的中国专家数记为,求的分布列和数学期望.
已知函数在处取得极值. (1)求实数的值; (2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围; (3)证明:对任意的正整数,不等式都成立.
已知椭圆的离心率为,直线过点,,且与椭圆相切于点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过点的直线与椭圆相交于不同的两点、,使得?若存在,试求出直线的方程;若不存在,请说明理由.
设数列的前项和为.已知,,. (Ⅰ)求数列的通项公式;(Ⅱ)记为数列的前项和,求.
在长方体中,,,为中点.(Ⅰ)证明:;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.