已知 a n 为等差数列,且 a 1 + a 3 = 8 , a 2 + a 4 = 12 .
(Ⅰ)求数列 a n 的通项公式;
(Ⅱ)记 a n 的前 n 项和为 S n ,若 a 1 , a k , a k + 2 成等比数列,求正整数 k 的值.
在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程.(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.
已知☉M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切☉M于A,B两点.(1)如果|AB|=,求直线MQ的方程.(2)求证:直线AB恒过一个定点.
在直角坐标平面上给定一曲线y2=2x,(1)设点A的坐标为,求曲线上距点A最近的点P的坐标及相应的距离|PA|.(2)设点A的坐标为(a,0),a∈R,求曲线上的点到点A距离的最小值dmin,并写出dmin=f(a)的函数表达式.
已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).(1)证明:平面PAD⊥平面PCD.(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA∶VMACB=2∶1.(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.
如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:平面PAC⊥平面PBC.(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.