已知函数 f ( x ) = ( a x 2 + b x + c ) e x 在 0 , 1 上单调递减,且满足 f ( 0 ) = 1 , f ( 1 ) = 0 .
(Ⅰ) 求 a 的取值范围;
(Ⅱ)设 g ( x ) = f ( x ) - f ` ( x ) ,求在 0 , 1 上的最大值和最小值.
已知函数,是的导函数.(I)求:,及函数y=的最小正周期;(II)求:时,函数的值域。
((本小题满分14分) 如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S— CD—A的平面角为,M为AB中点,N为SC中点. (1)证明:MN//平面SAD; (2)证明:平面SMC⊥平面SCD; (3)若,求实数的值,使得直线SM与平面SCD所成角为
(本小题满分14分)已知数列的首项,,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前项和.
(本小题满分14分)已知A,B,C是△ABC的三个内角,向量,且.(1)求角A(2)若,求.
((本小题满分15分)已知圆C过定点F,且与直线相切,圆心C的轨迹为E,曲线E与直线:相交于A、B两点。(I)求曲线E的方程;(II)在曲线E上是否存在与的取值无关的定点M,使得MA⊥MB?若存在,求出所有符合条件的定点M;若不存在,请说明理由。