((本小题满分14分) 如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S— CD—A的平面角为,M为AB中点,N为SC中点. (1)证明:MN//平面SAD; (2)证明:平面SMC⊥平面SCD; (3)若,求实数的值,使得直线SM与平面SCD所成角为
解关于的不等式.
在如图所示的多面体中,平面平面,是边长为2的正三角形,,且 (1)求证:; (2)求多面体的体积。
如图,点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切与点。 (1)求的值及椭圆的标准方程; (2)设动点满足,其中是椭圆上的点,为原点,直线与的斜率之积为,求证:为定值。
已知是自然对数的底数,函数。 (1)求函数的单调递增区间; (2)当时,函数的极大值为,求的值。
在正项数列中,,对任意,函数满足, (1)求数列的通项公式; (2)求数列的前项和。