((本小题满分14分) 如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S— CD—A的平面角为,M为AB中点,N为SC中点. (1)证明:MN//平面SAD; (2)证明:平面SMC⊥平面SCD; (3)若,求实数的值,使得直线SM与平面SCD所成角为
已知数列的前项和为,,若成等比数列,且时,. (1)求证:当时,成等差数列; (2)求的前n项和.
已知等差数列{}的前n项和为Sn,公差d≠0,且S3=9,a1,a3,a7成等比数列. (1)求数列{}的通项公式; (2)设=,求数列{}的前n项和.
在数列中,为常数,,且成公比不等于1的等比数列 (1)求的值; (2)设,求数列的前项和
已知函数. (1)当时,求函数单调区间; (2)若函数在区间[1,2]上的最小值为,求的值.
已知函数f(x)=lnx-a2x2+ax(aR). (l)当a=1时,证明:函数f(x)只有一个零点; (2)若函数f(x)在区间(1,十)上是减函数,求实数a的取值范围.