(本小题满分12分) 己知圆C: (x – 2 )2 + y 2 =" 9," 直线l:x + y = 0. (1) 求与圆C相切, 且与直线l平行的直线m的方程; (2) 若直线n与圆C有公共点,且与直线l垂直,求直线n在y轴上的截距b的取值范围;
(本小题满分14分)在直角坐标系中,O为坐标原点,设直线经过点,且与轴交于点F(2,0)。 (Ⅰ)求直线的方程; (Ⅱ)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程。
(本小题满发14分)已知 (Ⅰ)求的值; (Ⅱ)求的值
(本小题共13分)对于数列,若满足,则称数列为“0-1数列”.定义变换,将“0-1数列”中原有的每个1都变成0,1,原有的每个0都变成1,0.例如:1,0,1,则设是“0-1数列”,令3,…. (Ⅰ) 若数列:求数列; (Ⅱ) 若数列共有10项,则数列中连续两项相等的数对至少有多少对?请说明理由; (Ⅲ)若为0,1,记数列中连续两项都是0的数对个数为,.求关于的表达式.
(本小题共13分)在平面直角坐标系中,设点,以线段为直径的圆经过原点. (Ⅰ)求动点的轨迹的方程; (Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.
(本小题共14分)已知函数.. (Ⅰ)当时,求曲线在处的切线方程(); (Ⅱ)求函数的单调区间.