已知:直线分别与 x轴、y轴交于点A、点B,点P(,b)在直线AB 上,点P关于轴的对称点P′ 在反比例函数图象上.当a=1时,求反比例函数的解析式设直线AB与线段P'O的交点为C.当P'C =2CO时,求b的值;过点A作AD//y轴交反比例函数图象于点D,若AD=,求△P’DO的面积.
(1)计算: (2)解方程:
如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图(1)中,请你通过观察、思考、猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)(2)将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想BG、AE有什么数量和位置关系?请证明你的猜想.
观察下面计算: ① ② ;③ ④ .求:(1)直接写出(n为正整数)的值;(2)利用上面所揭示的规律计算: .
已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.
为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?