我们自从有了用字母表示数,发现表达有关的数和数量关系更加的简洁明了,从而更助于我们发现更多有趣的结论,请你按要求试一试:(1)用代数式表示:①与的平方的差;②,两数的和与,两数的差的乘积.(2)当时,求第(1)题中①②所列的代数式的值,根据计算的结果你发现了什么等式?(3)利用(2)中发现的结论,用简便方法计算的值.
阅读下面的材料:的根为, ∴ 综上所述得,设的两根为、,则有 请利用这一结论解决下列问题: 设方程的根为、,求x+x的值。
如图,在等边△ABC中,已知点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F。 (1)求证:AD=CE (2)求∠DFC的度数。
某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。为了迎接“六一”儿童节和扩大销售,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元(销售量尽可能多),那么每件童装应降价多少元?
已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.
已知关于x的一元二次方程,若方程有两个相等的实数根,求m的值.