(本小题满分12分) 在直角坐标系中,以坐标原点为圆心的圆与直线:相切.(1)求圆的方程;(2)若圆上有两点关于直线对称,且,求直线MN的方程;(3)圆与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.
已知函数 (a∈R).(1)若在[1,e]上是增函数,求a的取值范围(2)若a=1,a≤x≤e,证明:<
已知函数为大于零的常数。(1)若函数内单调递增,求a的取值范围(2)求函数在区间[1,2]上的最小值。
已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.
(本小题满分14分)已知定义在R上的单调函数,存在实数,使得对于任意实数总有恒成立.(Ⅰ)求的值;(Ⅱ)若,且对任意正整数,有,记,,比较与的大小关系;(Ⅲ)若不等式对任意不小于2的正整数都成立,求的取值范围.
(本小题满分13分)已知函数R),设关于的方程的两实根为,方程的两实根为.(Ⅰ)若,求的关系式;(Ⅱ)若均为负整数,且,求的解析式; (Ⅲ)若.