某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验如下:
(1)在给定坐标系中画出表中数据的散点图;(2)求关于的线性回归方程;(3)试预测加工10个零件需要多少时间?(,)
(满分12分) 设直线的方程为。 (1)若在两坐标轴上的截距相等,求的方程; (2)若不经过第二象限,求的取值范围。
(满分10分) 求函数的最大值和最小值。
(本题满分12分) 对每个正整数n,是抛物线上的点,过焦点F的直线FAn交抛物线另一点。 (1)试证: (2)取并为抛物线上分别为与为切点的两条切线的交点,求证
(本小题满分12分) 如图:平面直角坐标系中为一动点,,,. (1)求动点轨迹的方程; (2)过上任意一点向作 两条切线、,且、交轴于、, 求长度的取值范围.
已知过点的动直线与圆:相交于、两点,是中点,与直线:相交于. (1)当时,求直线的方程; (2)探索是否与直线的倾斜角有关, 若无关,请求出其值;若有关,请说明理由..