设函数.(Ⅰ)若是从-2、-1、0、1、2五个数中任取的一个数,是从0、1、2三个数中任取的一个数,求函数无零点的概率;(Ⅱ)若是从区间[-2,2]任取的一个数,是从区间[0,2]任取的一个数,求函数无零点的概率.
已知函数,函数 ⑴当时,求函数的表达式; ⑵若,函数在上的最小值是2 ,求的值; ⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.
设f(x)=2x3+ax+bx+1的导数为,若函数的图象关于直线对称,且.](Ⅰ)求实数,的值;(5分)(Ⅱ)求函数的极值
(1) 求圆心在直线上,且与直线相切于点的圆的方程. (2)求与圆外切于(2,4)点且半径为的圆的方程.
已知等比数列{an}的公比q=3,前3项和S3=。(I)求数列{an}的通项公式; (II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。
在△中,角、、的对边分别为,满足,且. (1)求的值; (2)若,求△的面积.