设向量.(Ⅰ)求;(Ⅱ)若函数,求的最小值、最大值.
甲、乙两容器中分别盛有两种浓度的某种溶液,从甲容器中取出溶液,将其倒入乙容器中搅匀,再从乙容器中取出溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:,,第次调和后的甲、乙两种溶液的浓度分别记为:、.(1)请用、分别表示和;(2)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于.
如图所示,空间中有一直角三角形,为直角,,,现以其中一直角边为轴,按逆时针方向旋转后,将点所在的位置记为,再按逆时针方向继续旋转后,点所在的位置记为.(1)连接,取的中点为,求证:面面;(2)求与平面所成的角的正弦值.
如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙、的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?
如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.
已知函数.(1)当时,求函数的单调区间;(2)当时,函数图象上的点都在所表示的平面区域内,不等式恒成立,求实数的取值范围.