已知在中,,,,解这个三角形;
过点作一条直线和分别相交于两点,试求的最大值。(其中为坐标原点)
已知椭圆ε:(a>b>0),动圆:,其中b<R<a. 若A是椭圆ε上的点,B是动圆上的点,且使直线AB与椭圆ε和动圆均相切,求A、B两点的距离的最大值.
在周长为定值的中,已知,且当顶点位于定点时,有最小值为.(1)建立适当的坐标系,求顶点的轨迹方程.(2)过点作直线与(1)中的曲线交于、两点,求的最小值的集合.
在平面直角坐标系xoy中,给定三点,点P到直线BC的距离是该点到直线AB,AC距离的等比中项。(Ⅰ)求点P的轨迹方程;(Ⅱ)若直线L经过的内心(设为D),且与P点的轨迹恰好有3个公共点,求L的斜率k的取值范围。
已知点A和曲线上的点…、。若、、…、成等差数列且公差d >0,(1). 试将d表示为n的函数关系式.(2). 若,是否存在满足条件的.若存在,求出n可取的所有值,若不存在,说明理由.