如图1,将EAF绕着四边形ABCD的顶点A顺时针旋转,EAF的两边分别与DC的延长线交于点F,与CB的延长线交于点E,连接EF。若四边形ABCD为正方形,当EAF=时,EF与DF、BE之间有怎样的数量关系?(只需直接写出结论)如图2,如果四边形ABCD中,AB=AD,ABC与ADC互补,当EAF= BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式并给予证明。在(2)中,若BC=4,DC=7,CF=2,求CEF的周长(直接写出结果即可)。
南菁中学的高中部在敔山湾校区,初中部在老校区,学校学生会在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知敔山湾校区的每位高中学生往返车费是6元,每人每天可栽植5棵树;老校区的每位初中学生往返车费是10元,每人每天可栽植3棵树.要求初高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不得超过210元.要使本次活动植树最多,初高中各有多少学生参加?最多植树多少棵?
某校组织初三学生电脑技能竞赛,每班参加比赛的学生人数相同,竞赛成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下. (1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为;
(2)请你将表格补充完整: (3)试运用所学的统计知识,从二个不同角度评价初三(1)班和初三(2)班的成绩.
某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.南菁中学要从甲、乙两种品牌电脑中各选购一种型号的电脑. (1)写出所有选购方案(利用列表的方法或树状图表示); (2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
在四边形中,对角线AC与BD交于点O,△ABO≌△CDO. (1)求证:四边形为平行四边形; (2)若∠ABO=∠DCO,求证:四边形为矩形.
解分式方程:.