某居民小区有两个相互独立的安全防范系统(简称系统) A 和 B ,系统 A 和系统 B 在任意时刻发生故障的概率分别为 1 10 和 P 。 (Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为 49 50 ,求的 P 值;
(Ⅱ)求系统 A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率。
(选修4-2:矩阵与变换) 若点在矩阵对应变换的作用下得到点,求矩阵的逆矩阵.
(选修4-1:几何证明选讲)如图,设、是圆的两条弦,直线是线段的垂直平分线.已知,求线段的长度.
(本小题满分16分)设数列的前项和为,满足.(1)当时,①设,若,.求实数的值,并判定数列是否为等比数列;②若数列是等差数列,求的值;(2)当时,若数列是等差数列,,且,,求实数的取值范围.
(本小题满分16分)已知函数,,其中函数的图象在点处的切线平行于轴.(1)确定与的关系;(2)若,试讨论函数的单调性; (3)设斜率为的直线与函数的图象交于两点,求证:.
(本小题满分16分)设椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.(1)求椭圆的方程;(2)设直线与椭圆交于不同的两点,以线段为直径作圆.若圆与轴相交于不同的两点,求的面积;(3)如图,、、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点.设的斜率为,的斜率为,求证:为定值.