已知椭圆 C 1 : x 2 4 + y 2 = 1 , C 2 以 C 1 的长轴为短轴,且与 C 1 有相同的离心率。 (1)求椭圆 C 2 的方程; (2)设 O 为坐标原点,点 A , B 分别在椭圆 C 1 和 C 2 上, O B ⇀ = 2 O A ⇀ ,求直线 A B 的方程.
已知函数,(). (1)试讨论函数的单调性; (2)设函数,,当函数有零点时,求实数的最大值.
如图,在平面内,,,P为平面外一个动点,且PC=, (1)问当PA的长为多少时, (2)当的面积取得最大值时,求直线BC与平面PAB所成角的大小
在数列{}中,,, (1)求数列的通项公式 (2)设(),求数列的前10项和.
设的内角所对的边长分别为,且,A=,. (1)求函数的单调递增区间及最大值; (2)求的面积的大小
已知函数,() (1)对于函数中的任意实数x,在上总存在实数,使得成立,求实数的取值范围 (2)设函数,当在区间内变化时, (1)求函数的取值范围; (2)若函数有零点,求实数m的最大值.