对于项数为m的有穷数列数集 { a n } ,记 b k = m a x { a 1 , a 2 , . . . , a k } ( k = 1 , 2 , . . . , m ),即 b k 为 a 1 , a 2 , . . . , a k 中的最大值,并称数列 { b n } 是 { a n } 的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5. (1)若各项均为正整数的数列 { a n } 的控制数列为2,3,4,5,5,写出所有的 { a n } ; (2)设 { b n } 是 { a n } 的控制数列,满足 a k + b m - k + 1 = C ( C 为常数, k = 1 , 2 , . . . , m ).求证: b k = a k ( k = 1 , 2 , . . . , m ); (3)设 m = 100 ,常数 a ∈ ( 1 2 , 1 ) .若 a n = a n 2 - ( - 1 ) n ( n + 1 ) 2 n , { b n } 是 { a n } 的控制数列,求 ( b 1 - a 1 ) + ( b 2 - a 2 ) + . . . + ( b 100 - a 100 ) .
如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点. (1)求证:MN⊥AB,MN⊥CD; (2)求MN的长; (3)求异面直线AN与CM所成角的余弦值.
如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量: (1);(2);(3)+.
)如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯 形,∠BAD=∠FAB=90°,BCAD,BEFA,G、H分别为FA、FD的中点. (1)证明:四边形BCHG是平行四边形; (2)C、D、F、E四点是否共面?为什么? (3)设AB=BE,证明:平面ADE⊥平面CDE.
如图所示,在三棱锥P—ABC中,PA⊥底面ABC, (1)证明:平面PBE⊥平面PAC; (2)如何在BC上找一点F,使AD∥平面PEF?并说明理由.
如图所示,ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分别是AB、PC的中点.求证:MN⊥平面PCD.