对于项数为m的有穷数列数集 { a n } ,记 b k = m a x { a 1 , a 2 , . . . , a k } ( k = 1 , 2 , . . . , m ),即 b k 为 a 1 , a 2 , . . . , a k 中的最大值,并称数列 { b n } 是 { a n } 的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5. (1)若各项均为正整数的数列 { a n } 的控制数列为2,3,4,5,5,写出所有的 { a n } ; (2)设 { b n } 是 { a n } 的控制数列,满足 a k + b m - k + 1 = C ( C 为常数, k = 1 , 2 , . . . , m ).求证: b k = a k ( k = 1 , 2 , . . . , m ); (3)设 m = 100 ,常数 a ∈ ( 1 2 , 1 ) .若 a n = a n 2 - ( - 1 ) n ( n + 1 ) 2 n , { b n } 是 { a n } 的控制数列,求 ( b 1 - a 1 ) + ( b 2 - a 2 ) + . . . + ( b 100 - a 100 ) .
已知函数的图象过点(—1,—6),且函数 的图象关于y轴对称。 (1)求m、n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB。(1)求证:AB平面PCB;(2)求二面角C—PA—B的大小.
已知数列时,总成等差数列。 (1)求数列的通项公式;(2)若数列
设函数(I)求函数的最小正周期及函数的单调递增区间; (II)若,是否存在实数m,使函数?若存在,请求出m的取值;若不存在,请说明理由。
设,,试比较a、b的大小。