对于项数为m的有穷数列数集 { a n } ,记 b k = m a x { a 1 , a 2 , . . . , a k } ( k = 1 , 2 , . . . , m ),即 b k 为 a 1 , a 2 , . . . , a k 中的最大值,并称数列 { b n } 是 { a n } 的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5. (1)若各项均为正整数的数列 { a n } 的控制数列为2,3,4,5,5,写出所有的 { a n } ; (2)设 { b n } 是 { a n } 的控制数列,满足 a k + b m - k + 1 = C ( C 为常数, k = 1 , 2 , . . . , m ).求证: b k = a k ( k = 1 , 2 , . . . , m ); (3)设 m = 100 ,常数 a ∈ ( 1 2 , 1 ) .若 a n = a n 2 - ( - 1 ) n ( n + 1 ) 2 n , { b n } 是 { a n } 的控制数列,求 ( b 1 - a 1 ) + ( b 2 - a 2 ) + . . . + ( b 100 - a 100 ) .
如图,梯形ABCD中,CD//AB,,E是AB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角的大小为1200. (I)求证:; (II)求直线PD与平面BCDE所成角的大小; (III)求点D到平面PBC的距离.
已知函数. (1)当时,求f ()的值域; (2)将f ()的图象按向量="(h," k) (0 < h < p)平移,使得平移后的图象关于原点对称,求出向量.
(本题10分)已知函数有极值. (1)求的取值范围; (2)若在处取得极值,且当时,恒成立,求的取值范围.
(本题10分)已知椭圆与双曲线共焦点,且过() (1)求椭圆的标准方程; (2)求斜率为2的一组平行弦的中点轨迹方程。
(本题8分)在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?