解不等式组,并把解集在数轴上表示出来。
某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之 间所满足的数量关系(不需要证明)
已知:在四边形ABCD中,AC = BD,AC与BD交于点O,∠DOC = 60°.当四边形ABCD是平行四边形时(如图1),证明AB + CD = AC;当四边形ABCD是梯形时(如图2),AB∥CD,线段AB、CD和线段AC之间的数量关系是_____________________________;如图3,四边形ABCD中,AB与CD不平行,结论AB + CD = AC是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
如图,任意四边形ABCD,对角线AC、BD交于O点,过各顶点分别作对角线AC、BD的平行线,四条平行线围成一个四边形EFGH.试想当四边形ABCD的形状发生改变时,四边形EFGH的形状会有哪些变化?完成以下题目:当ABCD为任意四边形时,EFGH为________________;当ABCD为矩形时,EFGH为________________;当ABCD为菱形时,EFGH为________________;当ABCD为正方形时,EFGH为________________;当EFGH是矩形时,ABCD为________________;当EFGH是菱形时,ABCD为________________;当EFGH是正方形时,ABCD为________________.请选择(1)中任意一个你所写的结论进行证明.反之,当用上述方法所围成的平行四边形分别是矩形、菱形时,相应的原四边形必须满足怎样的条件?
如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?
P、Q、R、S四个小球分别从正方形ABCD的四个定点A、B、C、D点出发,以同样的速度分别沿AB、BC、CD、DA的方向滚动,其终点分别是B、C、D、A。不管滚动多长时间,求证:四边形PQRS为正方形;连结对角线AC、BD、PR、SQ,你发现四条对角线有何关系?根据此图,若有四个全等的直角三角形,你能否拼成一个正方形?若这个三角形直角边为a、b,斜边问c,你能否根据面积推导出勾股定理?