已知抛物线与x轴交于不同的两点和,与y轴交于点C,且是方程的两个根(). (1)求抛物线的解析式;(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.
如图,已知抛物线y=ax2+2x+c的顶点为A(―1,―4),与y轴交于点B,与x轴负半轴交于点C.(1)求这条抛物线的函数关系式;(2)点P为第三象限内抛物线上的一动点,连接BC、PC、PB,求△BCP面积的最大值,并求出此时点P的坐标;(3)点E为抛物线上的一点,点F为x轴上的一点,若四边形ABEF为平行四边形,请直接写出所有符合条件的点E的坐标.
做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?
如图,一艘科学考察船由港口A出发沿正北方向航行,在航线的一侧有两个小岛C、D.考察船在A处时,测得小岛C在船的正西方,小岛D在船的北偏西30°方向.考察船向北航行了12千米到B处时,测得小岛C在船的南偏西30°方向,小岛D在船的南偏西60°方向.求小岛C、D之间的距离.
有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题: (1)在这次评价中,一共抽查了 名学生; (2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度; (3)请将频数分布直方图补充完整; (4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?