如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求的值;(2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,求这两名同学数学成绩之差的绝对值为3的概率.(注:方差,其中为,,…,的平均数)
某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人. (Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系? (Ⅱ)将上述调查所得到的频率视为概率,从该校高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3 个成绩中语文,外语两科成绩至少有一科优秀的个数为X ,求X的分布列和期望E(x).
附:
△ABC的内角A,B,C的对边分别为a,b,c,已知ac=b2-a2,A=,求B.
已知椭圆C:的离心率等于,点P在椭圆上。 (1)求椭圆的方程; (2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.
设函数的图像在处取得极值4. (1)求函数的单调区间; (2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.
如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,,点分别是线段的中点. (1)求证:平面平面; (2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.