某电器商店经销A型号洗衣机,今年三月份将这种洗衣机每台售价调整为2000元,结果比去年三月份多卖出4台,但今年三月份和去年三月份这种洗衣机的销售总额均为4.8万元。列方程计算去年三月份每台A型号洗衣机售价是多少元?为了改善经营,商店老板决定再经销B型号洗衣机,已知A型号洗衣机每台进货价为180。元,B型号洗衣机每台进货价为1500元,电器商店预计用不大于3.3万元且不少于3.22万元的资金购进这两种洗衣机共20台,间有哪几种进货方案?
与成反比例,当=2时,=-1,求函数解析式和自变量的取值范围。
如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),A点坐标为(-1,0)OB=OC , (1)求这个二次函数的表达式. (2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由. (3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积. 图1图2
某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍). (1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为w元,求w与x的函数关系式; (3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
立定跳远时,以小明起跳时重心所在竖直方向为y轴(假设起跳时重心与起跳点在同一竖直方向上),地平线为x轴,建立平面直角坐标系(如图),则小明此跳重心所走过的路径是一条形如y=-0.2(x-1)2+0.7的抛物线,在最后落地时重心离地面0.3m(假如落地时重心与脚后跟在同一竖直方向上). (1)小明在这一跳中,重心离地面最高时距离地面多少米?此时他离起跳点的水平距离有多少米? (2)小明此跳在起跳时重心离地面有多高? (3)小明这一跳能得满分吗(2.40m为满分)?
用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米. (1)求y关于x的函数关系式; (2)当x为何值时,围成的养鸡场面积为60平方米? (3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.