如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于点P,连结MP。已知动点运动了秒。请直接写出PN的长 ;(用含的代数式表示)若0秒≤≤3秒,试求△MPA的面积S与时间秒的函数关系式,并求S的最大值。若0秒≤≤3秒,△MPA能否与△PCN相似?若能,试求出相似时的对应值;若不能,试说明理由。
八年级(1)班班委发起慰问烈属王大妈的活动,决定全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出. (1)求同学们卖出鲜花的销售额(元)与销售量(支)之间的函数关系式; (2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金(元)与销售量(支)之间的函数关系式;若要筹集500元的慰问金,则要卖出鲜花多少支?(慰问金=销售额-成本)
一次函数y=kx+4的图象经过点(-3,-2),则 (1)求这个函数表达式; (2)判断(-5,3)是否在此函数的图象上;
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O. (1)求证:AB=DC; (2)试判断△OEF的形状,并说明理由.
先化简,再求值先化简, ,其中=-2 .
计算: (1)、(2)、