如图,在平面直角坐标系中,直线与轴交于点A,与y轴交于点C. 抛物线经过A、C两点,且与x轴交于另一点B(点B在点A右侧).求抛物线的解析式及点B坐标;若点M是线段BC上一动点,过点M的直线EF平行y轴交轴于点F,交抛物线于点E.求ME长的最大值;试探究当ME取最大值时,在抛物线x轴下方是否存在点P,使以M、F、B、P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:
(1)猜测y与x之间的函数关系,求出函数关系式并加以验证; (2)当砝码的质量为24g时,活动托盘B与点O的距离是多少? (3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度. (1)该小组的同学在这里利用的是 投影的有关知识进行计算的; (2)试计算出电线杆的高度,并写出计算的过程.
在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场. (1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率; (2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.
已知关于x的方程x2+2(k-3)x+k2=0有两个实数根x1、x2. (1)求k的取值范围; (2)若|x1+x2-9|=x1x2,求k的值.
如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,-2). (1)求反比例函数和一次函数的解析式; (2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.