、如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,判断并说明以A、D、F、E为顶点的四边形是怎样特殊的四边形?若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.
先化简,再求值:,其中x为分式方程的根.
如图,在平面直角坐标系中,作出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标,并计算四边形ABC1C的面积.
已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(,0)和An(bn,0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1) 求a1、b1的值及抛物线y2的解析式;(2) 抛物线y3的顶点坐标为(____,___);依此类推第n条抛物线yn的顶点坐标为(_____,_____)(用含n的式子表示);所有抛物线的顶点坐标满足的函数关系式是_____________;(3) 探究下列结论:①若用An-1 An表示第n条抛物线被x轴截得的线段的长,则A0A1=______,An-1 An=____________;②是否存在经过点A1(b1,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.
如图,点是半圆的半径上的动点,作于.点是半圆上位于左侧的点,连结交线段于,且.(1) 求证:是⊙O的切线.(2) 若⊙O的半径为,,设.①求关于的函数关系式.②当时,求的值.
某商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价每上涨1元.则每个月少卖10件。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1) 求y与x的函数关系式(2) 每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3) 若每个月的利润不低于2160元,售价应在什么范围?