如图:△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB与AC、AE分别交于点O、E,连接EC. 求证:AD=EC; 当∠BAC=90º时,求证:四边形ADCE是菱形; 在(2)的条件下,若AB=AO,且OD=,求菱形ADCE的周长.
阅读理解: 对非负实数x“四舍五入”到个位的值记为<x>, 即:当n为非负整数时,如果,则<x>=n。 如:<0>=<0.49>=0,<0.64>=<1.393>=1,<3>=3,<2.5>=<3.12>=3,… 试解决下列问题: (1)填空:如果<3x-2>=4,则实数x的取值范围为 ; (2)当,m为非负整数时,求证:; (3)求满足的所有非负实数x的值;
某校为了丰富学生的校园生活,准备购进一批价格分别为80元、60元的篮球和足球。该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
已知 x1、x2是一元二次方程的两个实数根。(1)求的取值范围;(2)是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由。
定义一种新运算:观察下列各式:1⊙3="1×4+3=7" ;3⊙(-1)= 3×4-1=11;5⊙4="5×4+4=24" ;4⊙(-3)= 4×4-3=13(1)请你想一想:a⊙b=___________;(2)若a≠b,那么a⊙b______b⊙a(填入 “=”或 “≠ ”) ;(3)若a⊙(-2b) = 4,请计算 (a-b)⊙(2a+b)的值.
实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.